Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Examples of anaerobic oxidation of aldehydes in hydrothermal solutions are reported. The reaction using iron( iii ) nitrate as the oxidant occurs under mild hydrothermal conditions and generates carboxylic acids in good yields. This method differs from previous studies which use atmospheric oxygen as the oxidant.more » « less
-
Abstract Natural organic matter plays an important role in oceanic hydrothermal systems through a combination of geological and chemical processes. However, identifying the hydrothermal pathways of organic compounds is still quite limited, preventing us from understanding how organic matter is transformed in hydrothermal systems. In this study, we focus on the reaction pathways of alkenes, which represent a key functional group intermediate linking the most abundant hydrocarbons in seafloor hydrothermal environments. Three major pathways are observed for alkenes under mild hydrothermal conditions, including hydration, oxidation, and dimerization. The pathway distributions of alkenes can be affected by the presence of dissolved metal salts; hydration of alkenes is driven by metal ions via the change of solution pH, while alkene dimerization is controlled by pH and the type of metal cations and complexes. Overall, this study identifies alkene hydrothermal pathways and highlights the important roles of metal salts in controlling hydrothermal transformations.more » « less
An official website of the United States government
